
Automated Process Classification Framework
using SELinux Security Context

Pravin Shinde and Priyanka Sharma
Centre for Development of Advanced Computing

Mumbai, India
Email: {pravin,priyanka}@cdacmumbai.in

Srinivas Guntupalli
ProCurve, HP

Bangalore, India
Email: gsrinivas@gmail.com

Abstract—Stringent Quality of Service requirements from
operating systems led to several extensions to the existing systems.
These extensions aim at classifying the processes in a system
at runtime to provide differentiated Quality of Service. Also
there are many other applications which do need classification
of processes for their working. The methods used for identifying
the processes and grouping them, by different extensions have
been ad-hoc. Enabling several of such extensions adds to the
complexity of administering a system. We propose an automated
mechanism to classify processes using some persistent character-
istics of a process. We use persistent tokens (security contexts)
added to all kernel objects by Security Enhanced Linux. We
present the overall problem as three sub-problems viz., Notifica-
tion, Classification and Enforcement. The proposed solution solves
Notification and Classification problems. Enforcement is left to the
specific application that uses the framework.

I. INTRODUCTION

Traditionally operating systems(OS) have been resource
managers. The resource intensive applications and hostile
environment in which they run created new challenges to
operating systems. Several extensions were proposed in the
literature that aim at making operating system, an efficient and
secure service provider rather than a mere resource manager.
To provide Quality of Service(QoS) at kernel, Class based
Kernel Resource Management(CKRM) has been proposed. To
efficiently use memory and processors in a multiprocessor
system, CPU-Set has been proposed. Enhanced Linux System
Accounting(ELSA) provides system accounting in user space.
Even though these efforts to achieve resource management
and accounting have been independent, they address some
common issues and have some common behavior. This leads
to a lot of overlap and repetition of work and makes the
systems more complex and error prone. Salient feature of
all these systems is to classify processes based on some
process feature and provide differentiated QoS. SELinux, an
extension to implement Mandatory Access Control(MAC) in
Linux, identifies kernel objects in a unique way, which can be
used by the above systems as well. We discuss all the systems
in detail in the following sections.

A. SELinux

SELinux is an implementation of MAC using Linux Se-
curity Modules(LSM) in the Linux kernel, based on the
principle of least privilege[1],[2](Certain distributions of Linux
included SELinux in their main line releases). MAC has been

introduced as a means of restricting access to objects based on
the sensitivity (as represented by a label) of the information
contained in the objects. It also verifies the authority of
subjects to access information of such sensitivity[4].

To implement MAC, SELinux abstracts the system into ref-
erence monitor[5],[6]. Reference Monitor classifies resources
into active and passive entities. Active entities such as pro-
cesses are called subjects and passive entities such as files
are called objects. The Reference Monitor mechanism controls
access among these subjects and objects according to the
specified security policy[7].

MAC is done in accordance with the policies specified
by the administrator of the system. SELinux access control
is based on access control attributes associated with objects
and subjects. These access control attributes are called secu-
rity context. All objects (files, inter-process communication
channels, sockets and so on) and subjects (processes) have
a unique security context associated with them. A security
context has three elements: user, role, and type identifiers. The
usual format for specifying or displaying a security context is
as follows:

user:role:type
The type identifier is the primary part of the security context

that is used to write rules in the policy database and deter-
mines access. The security context of an object is persistent.
Kernel data structures have been extended to accommodate
the security context. A policy database governs the security
context to be assigned to a kernel object. Linux distributions
ship a comprehensive policy database and administrators can
customize it as per the local needs.

B. CKRM

Control of key resources such as memory, CPU time, disk
I/O bandwidth and network bandwidth is strongly tied to
kernel tasks and address spaces in Linux OS. There is very
limited support from kernel to enforce user specified priorities
during resource allocation. CKRM allows user level controls
to provide differentiated service at a user or job level. It also
enables accurate metering of resource consumption in user and
kernel mode[8][9].

Linux kernel represents both processes and threads as tasks.
A class (used by CKRM) is a group of tasks. The grouping
of tasks into classes is decided by policies. A policy database,

The Third International Conference on Availability, Reliability and Security

0-7695-3102-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ARES.2008.154

592

The Third International Conference on Availability, Reliability and Security

0-7695-3102-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ARES.2008.154

592

The Third International Conference on Availability, Reliability and Security

0-7695-3102-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ARES.2008.154

592

which is a collection of rules, decides task and class mappings.
Administrator of the system creates a policy and makes it
available to the kernel. The kernel optionally verifies the policy
for consistency and activates it. Similar to SELinux, there
needs to be a mechanism to uniquely identity each task. A
Task-Tag, a user-defined attribute, is associated with a task in
CKRM enabled systems. Using this tag application specific
criteria can be taken care of while classifying, as the tag is
user specified. Typically a system call, ioctl or /proc is the
interface between application and kernel, for the application to
convey its criteria through a tag. This tag is used in invoking a
specific classification rule. The proportions in which resources
should be allocated to classes is determined by a resource
manager. This could be either a human system administrator
or a resource management application middleware[8][9].

C. CPU Set

CPU-Sets are light-weight objects in the Linux kernel that
enable users to partition their multi-processor machine by
creating non-overlapping execution areas[10][11][12]. CPU
sets can eliminate the need for a gang scheduler, provide
isolation of one such job from other tasks on a system, and
facilitate provision of equal resources to each thread in a
job. Restraining all other jobs from using any of the CPUs
or memory resources assigned to a critical job minimizes
interference from other jobs on the system. This results in
both optimum and repeatable performance. The kernel CPU-
Set facility provides additional support for system-wide man-
agement of CPU and memory resources by related sets of
tasks. It provides a hierarchical structure to the resources, with
file-system like name-space and permissions, and support for
guaranteed exclusive use of resources.

Each task has a link to a CPU-Set structure that specifies the
CPUs and memory nodes available for its use. Hooks in the
system calls used for CPU placement and memory placement
ensure that any requested CPU or memory node is available
in that task’s CPU-Set. Kernel CPU-Sets are arranged in a
hierarchical virtual file system, reflecting the possible nesting
of soft partitions. The kernel task scheduler is constrained to
only schedule a task on the CPUs of that task’s CPU-Set. A
CPU-Set contains a set of tasks/processes and those tasks can
use processors and memory nodes that are associated with that
CPU-Set. There is no classification engine available for CPU-
Set to do the above mentioned functions automatically. An
administrator has to execute them manually.

D. ELSA

Enhanced Linux System Accounting(ELSA) is a user-space
solution for process accounting in Linux. Work is split into
the following parts in ELSA.

• Connector : A Linux kernel feature
• A user space daemon : jobd
• Per-process accounting information : BSD and/or CSA
• User space applications : webmin + jobmng + elsa
The connector reports process events to user-space[13]. It

uses the netlink mechanism and Linux kernel must be built

with the necessary configuration options. jobd listens to the
net link messages sent by the process event connector. This
way, whenever a process is forked, it will be informed. This
information is used manage a group of processes. Communica-
tion between jobd and high level applications happens through
sockets. The high level application can use this mechanisms to
send requests to add or remove a process from a job. The same
mechanism can be used to information about current jobs.
Thus, jobd is under the control of a high level application. BSD
accounting or CSA accounting (which is external to ELSA)
is used to obtain per-process accounting information. jobmng
is the interface to manage groups of processes. webmin pro-
vides per-group accounting information using the information
provided by jobd and per-process accounting mechanism. The
interactions and interfaces are shown in fig 1.

II. PROBLEM DESCRIPTION

Most of the extensions that we discussed use a configuration
filesystem for policy management. CPUSets are represented
as directories in the config file system. Resources have to be
assigned to the CPUSets. In order to classify the processes into
these CPUSET’s, one need to get their PIDs, and add them
to particular file in the directory indicating the corresponding
CPUSet (as per their resource requirements). So, classification
can only be done after the creation of the process. And, if a
process restarts, then it has to be classified again, as it gets a
new PID. Similarly, after every reboot classification has to
be done. This process involves lot of manual intervention.
Currently, there is no way to automate the process.

Similarly, during initialization of CKRM, its resource man-
ager commits a policy to the kernel. A default class is created
to which all tasks will initially belong until resource managers
policy is loaded. Policy load triggers classification. Classifi-
cation refers to association of tasks to classes and resource
requests to a class. Processes are classified, by default, into
the class of their parents. Classification engine uses UID, GID
and executable associated with the process for classification.
Administrators have to manage the config file system, which
contains the list of process classes and their resource shares.
Classification is a continuous process and happens whenever
a new task is created or attributes of a task are changed or
explicit reclassification of a task is done by resource manager.
Resource usage is monitored at class level and that information
is used for future decisions. Resource schedulers control the
resource utilization by tasks that belong to different classes.
The requirement to classify processes based on their attributes
is similar to CPUSet. Management of classes needs manual
intervention. There is no provision to specify the rules with
persistent identifiers.

ELSA also has similar shortcomings. It provides tools like
jobmng, ELSA which has to be used by system administrators
for manually classifying the processes into job groups. As
this classification is based on PID of a process, which is not
persistent, every time system or jobd restarts, classification has
to be done again. This process can’t be automated due to the
lack of persistent identifiers.

593593593

III. SUB-PROBLEMS

Specified problem can be broken down into three sub-
problems, and each of them can be dealt separately and
independently. The identified sub-problems are as follows,

• Notification
• Classification
• Enforcement

A. Notification

Creation of new process, or alteration of process is an event
that happens inside kernel and is protected from userspace.
This information can be obtained by inserting hooks into
kernel and trapping system calls like fork, exec and setuid,
which are responsible for these events. But this needs mod-
ification of kernel. There are some existing solutions which
provide similar notifications about process events. Connector
is a Linux kernel module which is implemented using netlink
sockets. Netlink sockets provide a standard way of commu-
nication between kernel and userspace processes. Connector
uses the netlink sockets to notify important process events
like fork, exec, id change(UID, GID, SUID etc) to userspace.
For connectors to work, kernel needs to be built with required
support. Once they are enabled, they will notify all process
related events to the userspace. As shown in fig.1, userspace
programs can receive these notifications using netlink sockets.

B. Classification

Classification problem arises because of using non-
persistent attributes of processes as keys. The processes need
to be classified as per the rules provided by users. Some
systems use PIDs as the unique identities of processes. But,
PIDs are volatile in nature and a new PID is generated
whenever a process starts. Even though the same application
is executed multiple times in same environment by the same
user, it will get different PID every time. As we can not find
out the PID’s of these processes in advance, it makes it almost
impossible to write rules in advance, based on PIDs. Currently,
most resource management systems, and other systems where
process classification is needed, use manual classification. This
is done based on some simple rules, like every new process
will inherit the class of its parent process. These basic process
classification systems provide an interface through which users
can reclassify the processes using their PID as handle to them.

C. Enforcement

As different applications provide different interfaces to
classify the processes, it makes the problem of enforcement
more application dependent. And also, these applications are
different in what they do after process classification. For
example, ELSA and CPUSET provide different interfaces to
change the class of a process, and also handle processes
differently after classification, as they have different objectives.
Depending on the need of application there may be a need of
one more configuration files to provide rules about behavior
after classification. For example, we need a configuration file
for PCSS-CPUSET classifier, which will be having rules about

Fig. 1. Overview of PCSS Architecture

when a new CPUSET is to be created, what should be the val-
ues to be assigned to various configuration parameters. Such
configuration file is not needed in case of ELSA, as ELSA
is not having any properties associated with jobs (i.e,. classes
in ELSA). As there is no generic solution for this problem,
different solutions are provided for different applications.

IV. RELATED WORK

There are existing solutions to this problem. One of them
is rule-based classification engine (RBCE), used by CKRM
for automatic process classification. It classifies the processes
based on the rules which can be written using UID, GID and
name of the executable. But this classification is very basic and
is not very flexible, as it does not consider the environment, in
which a process is being executed. It also does not recognize
various roles played by the user. Another problem with this
solution is that, it does not make clear distinctions among
above discussed subproblems (Notification, Classification and
Enforcement), which restricts the implementation to be very
specific to CKRM, and can not be easily reused at other places
like ELSA and CPUSET.

V. OUR APPROCH

We propose a classification solution PCSS(Process Classi-
fier based on SELinux Security Context) which is based on
security contexts of SELinux. The class of a process can be
decided based on its security context and the class mapped to
this security context in configuration file. The configuration file
is very simple and flexible. It contains only two parameters,
one is security context and second is corresponding class name
to which it should be assigned. As this module deals only with
the problem of classification, it is generic enough, so that it can
be used with any application that needs any kind of process
classification.

A. Why SELinux Security Contexts?

The proposed solution depends primarily on SELinux ker-
nel module. SELinux is available in Linux kernel from 2.6
onwards. Nowadays most of the distributions of Linux (i.e,.
Fedora core) are shipped with SELinux enabled by default.

594594594

Major criticism against SELinux had been its complex policies
which are difficult to configure. But, many user friendly
tools like seedit are available now which simplify the policy
management to a large extent. If SELinux is already enabled,
then using PCSS for process classification is straight forward.

The advantages of using security context of SELinux for
process classification are listed below:

• They are persistent (remain same across reboots)
• They are flexible (Security context differs depending on

who is executing, which program is being executed, and
in what context it is being executed)

• They are configurable (One can change SELinux policies
to set security contexts as per one’s needs. There are many
user-friendly tools which help in doing this.

• Process classification rules are kept in separate file from
SELinux internal policies. This helps in keeping classifi-
cation rules very simple.

• User needs to modify configuration file only once, as per
the local policies.

• Added flexibility is provided by supporting wild-
characters in security context.

VI. IMPLEMENTATION DETAILS

To implement the Notification module, we used connectors,
an existing infrastructure in Linux kernel. We have imple-
mented a userspace daemon, which continuously listens using
netlink sockets for messages from connectors. These messages
contain information about events with the PID of the process,
that caused the event. On receiving these messages from con-
nectors, the userspace daemon finds out the security context of
the process responsible for the event. It uses getpidcon system
call to get the security context from the PID. The context is
used to extract matching rules from configuration file. These
rules are flexible due to wild-character support. If no matching
rules are found, default classification is applied. If matching
rules are found, classification is done by Enforcement module
accordingly.

Different applications have different requirements from
enforcement module. So, it is implemented separately for
CKRM, CPUSET and ELSA. This module is mostly depen-
dent on the interface provided by the application for classifi-
cation of processes. As the interfaces provided by applications
like CPUSET and ELSA, for process classification, are very
much different, it is not feasible to provide a generic solution
for all the applications.

A. Wild Character support

To enhance flexibility and ease of use, wild-character sup-
port has been incorporated in rule syntax. It allows users to
mask irrelevant components of security context, and makes
rules more compact. The usual format of security context is
as follows:

user:role:type
But ’*’ can be put at any place of the security context replac-

ing user and/or role and/or type. ’*’ instructs the classification

module to ignore that part of security context while matching.
Following examples illustrate the use of wild characters.

• *:*:httpd t http class
This rule groups all ”httpd t” processes in http class,
without matching user and role part.

• user t:*:httpd t user class
This rule groups all processes of ”httpd t” type and user
is ”user t” without matching the role part.

B. PCSS CPUSET Integration

Fig. 2. CPUSET with PCSS

CPUSET classes are implemented inside kernel by CPUSET
kernel module. It provides interface in the form of a vir-
tual filesystem called CPUSET. As the CPUSET objects
have many properties associated with them like cpus, mems,
cpu exclusive, mem exclusive, memory pressure, etc., we use
separate configuration files for these CPUSET properties.
In integrated PCSS-CPUSET, Notification and Classification
phases do remain the same as in generic framework, but
Enforcement is implemented to handle the CUPSETfs interface
provided by CPUSET. Every directory in CPUSET filesystem
is a separate CPUSET class. A process is moved to a CPUSET
class by appending its PID in a members file inside directory
corresponding to the given CPUSET class.

Enforcement module starts by detecting the mount location
of virtual filesystem provided by CPUSET. After that, when-
ever a process is classified into any CPUSET, the enforcer first
searches to see if the specified CPUSET is already present
or not. If specified CPUSET is found, then the process is
directly added to that CPUSET. Otherwise, enforcer creates
new CPUSET using information given by the rules in the
configuration file for CPUSET. And, the process is moved to
the new CPUSET.

C. Integration of PCSS and CKRM

CPUSET and CKRM are very much similar in work and im-
plementation. CKRM also provides virtual filesystem named
as CONFIGFS. CPUSET and CKRM do defer in the properties
associated with these objects. So the configuration file used
by classification enforcer for creating classes will differ. But,

595595595

CKRM is no more supported in latest Linux kernels (after
kernel-26̇1̇8). Instead a more elegant resource management
solution named containers is being brought up. So, we didn’t
discuss integration of CKRM and PCSS.

D. Integration of PCSS and ELSA

In the integrated PCSS-ELSA also, notification and classifi-
cation phases do remain the same as in the generic framework,
but enforcement is quite different from PCSS-CPUSET’s coun-
terpart. ELSA relies on BSD process accounting kernel mod-
ule, to make the accounting data available to the userspace.
ELSA jobs are managed by the same userspace program which
does the classification work. Besides, it provides another
interface using UNIX sockets. This interface allows users to
change the classification of processes.

We are using the same mechanism provided by ELSA to
classify the processes in jobs. The ELSA userspace daemon
named jobd has been customized for this additional function-
ality. On receiving the notification of process related events
from notification module, jobd interacts with the classification
module to classify the processes as per user specified rules,
and enforces the classification by simulating the pseudo user
classification request. These pseudo requests trigger the actual
process classification inside ELSA.

Above discussed implementation has been posted as a
project on sourceforge. For more details, readers are requested
to refer to the project web pages[14].

Fig. 3. ELSA with PCSS

VII. CONCLUSION

By breaking down the problem of process level QoS pro-
visioning into sub-problems and providing generic solution
for Notification and Classification, we abstracted out generic
things from the large problem and provided a generic frame-
work. Any application that needs Notification and Classifica-
tion can use this framework. Also, use of SELinux security
contexts for classification made the framework more flexible
and easy of use.

VIII. FUTURE WORK

In the current implementation, when security context of a
kernel object change, notification module doesn’t send any
specific notification. Due to this, current solution needs to
monitor all notifications to detect changes in security contexts,
which overloads the application. If connectors can be modified
to include such notification, this workload can be reduced.

Also, SELinux does not provide any explicit support for
process classification from any other point of view except
security. SELinux support can be enhanced, by extending its
security context to support other types of process classification
also, to include class field, as shown bellow.

user:role:type:class
This kind of modification can be used to considerably

increase the flexibility of classification. Also, there are other
applications and solutions like containers(upcoming resource
management solution), which do use userspace classification in
their working. This framework can be modified to incorporate
containers as well.

ACKNOWLEDGMENT

The authors would like to thank C-DAC for providing the
infrastructure and support

REFERENCES

[1] National Secuirty Agency - Security Enhanced Linux.
http://www.nsa.gov/selinux/info/faq.cfm

[2] Security enhanced Linux from wikipedia.
http://en.wikipedia.org/wiki/SELinux

[3] U. S. D. of Defense, Trusted computer system evaluation
criteria, DoD Standard 5200.28-STD, December 1985.
http://www.fas.org/irp/nsa/rainbow/tg003.htm

[4] Mandatory access control from wikipedia.
http://en.wikipedia.org/wiki/Mandatory access control

[5] J. P. Anderson, Computer security technology planning study, Tech. Rep.,
Oct. 1972. http://csrc.nist.gov/publications/history/ande72.pdf

[6] F. Mayer, K. MacMillan, and D. Caplan SELinux by Example: Using
Security En-hanced Linux. Prentice Hall.

[7] R. Spencer, S. Smalley, P. Losocco, M. Hibler, D. Andersen, and J.
Lepreau, The flask security architecture: System support for diverse
security policies, no. UUCS-98-014, 1998. [Online]. Available: cite-
seer.ist.psu.edu/spencer98flask.html

[8] S. Nagar, H. Franke, J. Choi, and C. Seetharaman, Class-based prioritized
resource control in linux, in Proceedings of the Linux Symposium, 2003.

[9] S. Nagar, R. van Riel, H. Franke, C. Seetharaman, V. Kashyap, and H.
Zheng, Im- proving linux resource control using ckrm, in Proceedings of
the Linux Symposium, 2004.

[10] CPUSets for Linux. [Online]. Available:
http://www.bullopensource.org/cpuset/

[11] ELSA on Sourceforge. [Online] Available: http://elsa.sourceforge.net/
[12] Linux Cross Reference. [Online] http://lxr.linux.no/source/Documentation/cpusets.txt
[13] Connectors [Online] http://lxr.linux.no/source/Documentation/connector/connector.txt
[14] PCSS on Sourceforge [Online] Available: pcss.sourceforge.net

596596596

